APPROXIMATE ANALYSIS OF THE STEADY-STATE
TEMPERATURE FIELD OF A PARALLELEPIPED
WITH A LOCAL ENERGY SOURCE

G. N. Dul'nev and E. I. Ermolina UDC 536.24.02

There is an approximate analysis of the steady-state temperature field of a parallelepiped
on one of whose faces there is a local energy source. A practical calculation scheme is
proposed, and its accuracy is evaluated.

We consider a parallelepiped on whose upper face there is an energy source of rectangular shape;
-the fact itself does not dissipate energy in the surrounding medium. At the opposite face there are bound-
‘ary conditions of the third kind; the lateral faces of the parallelepiped are insulated (Fig. 1). Problems
of this type arise in many applications, primarily in microelectronics. There are no fundamental difficult-
ies involved in analyzing the temperature field of such an object, but the complexity of the resulting equa-~
tions makes them difficult to use in practice, so that it is necessary to use instead the comparatively sim-
ple calculation methods worked out for particular cases [1, 2]. Accordingly, there is a need for an approxi-
mate solution method which would provide the necessary accurdacy in the first approximation and whose .
equations would be comparatively simple. One such method is the so-called generalized Kantorovich
method, whose basis is given in [3, 4]. Below we use this method to solve the problem formulated above,
and we point out a way to simplify the caleulation equations without reducing their accuracy.

The mathematical formulation of the problem for the case in which the source is the central position
reduces to the solution of the differential equation
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According to the generalized Kantorovich method this problem is equivalent to that of minimizing the func-
tional [4]
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Fig. 1. Paralielepiped with a local source. 1) x, y € [[;X [,];2)x,y
€1 X1,

- where the unknown function N can be approximated by
N=NX)M{Y)Q(2), (5)
and the coordinate dependences N(X), M(y), and Q(Z) are determined by the averaging method of [5].

With the same goal in mind, we subject Eq. (1) and boundary conditions (2) to the averaging operator
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Finding an ordinary differential equation for <N%(Z (X)):
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The coefficient ¢, is a measure of the deviation from a uniform temperature field along the z axis.

Under boundary conditions (8), the solution of Eq. (7) is
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= chpi(l—X), | X|>8,/2.
sh px

Setting N(X) = ( (X)) in (5) and substituting the result found for N into (4), we find [5]
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Here S(Y, Z) is the function which minimizes functional (13) and is the solution of the boundary-value
problem
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Accordingly, the original boundary-value problem in (1),.(2),reduces to the two-dimensional problem
in (16), (17), to solve which we again use the averaging method.

The application of operator

1
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to Eq. (16) and the boundary conditions (17) yields
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A solution of Eq. (19) compatible with boundary conditions (20) is
Miyy =& 1 o O (21)
1
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Fig. 3. Comparison of the exact (solid curves) and approximate (dashed curves) methods of
solving the problem for the case L,/L, = 1 and for values of dy/0y from 1to10. Bi =
a) Ly/L; = 0.05; b) Ly/L, = 0.1; ¢) Ly/L =
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Accordingly, the approximate solution of this problem is

N(X, Y, Z)= (Nyz(X)) (MZ()) Q2).} (24)

If we use a different averaging order [if we first apply the operator Ixy to Eq. (1) and then apply the opera~
tor I to the resulting two-dimensional differential equation], the solution turns out to be analogous:

NX, Y, Z)=(NZ (X)) {Mx2(Y)> QD). (25)

Equations (24) and (25) differ only in the structure of the parameters Px and py. Analysis shows that the param-
eter p corresponding to the coordinate function determined second [pl! for Eq. (24) and p; for Eq. (25)]
gives the temperature dependence in this direction more accurately.” We can thus write the unknown func-

tion as
N=(N" X)) (MY ¥)) Q). (26)

To determine the function Q(Z) we substitute (26) into (4) and integrate the latter over X and Y; in this
manner we reduce the problem to one of finding the minimum of a simple integral:
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The function Q(Z) which minimizes functional (27) must satisfy the equation

Q(2) 2

a7 —pzQ (Z) =0 (31)
and the boundary conditions
Q@) . g } o 4@ | _ buby 32
—= _ BiQ(Z = 0; = ; (32)
[ 4z @ !zzx dZ  |z=0  byby
EON. (33)
blx bly
The solution of this equation is
QD) =— 2l qz), (34
pz blxbly
02 = (PLBEMP 7\ chpz. (35)
1+ —%. th p,
1

Substituting the expressions for (NIZI(X)>, (MIZI(Y)), and Q(Z) into (26), and using (28)-(30), we find
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The analytic expressions for &z and @{i are like those for q::];‘ir and (ﬁg with p{I replaced by pIi.

Accordingly, we have found an expression for the dimensionless temperature N and equations for all
the parameters which appear in this expression. However, it is quite laborious to carry out calculations
on the basis of these equations. The primary difficulty lies in the determination of the parameters ¢; and
the need to solve the system of transcendental Eqs. (40)-(43), which relate the parameters Px: Py, Py and
$,. A simple iterative method is usually used to determine them.

To improve the accuracy of these equations and to simplify them we take the following approach We
define the complex f;I fI; in such a manner that the resulting solution satisfies the heat-balance equation at
the surface z = Ly:

aL,L, =P; Qpm1, =

fz=Ls
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Carrying out the integration and the necessary algebraic manipulations we find

P mm+ = shp,

and thus
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Analysis of f; as a function of its parameters shows that the quantity fII differs little from fI, in the limit
& —1we have f; =1, while in the 11m1t 6;— 0 we have
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In turn, we have

hm fi=2.
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Figure 2 shows VT; as a function of the parameters k; and 6;. Curve 1 is found from (46). All the
curves, corresponding to various values of 0;, gradually approach curve 1. This diagram greatly simplifies
the calculation of the parameters which appear in the expression for N.

Analysis shows that the value of zp(le) obtained after the successive approximations is approximately
the same as the initially specified value szZ):

2
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Let us outline the order for calculating the dimensionless temperature N.

1. From Egs. (3) we calculate 9;, X, Y, and Z; from Eqs. (46) and (47) we célculate Aj, ki, By,
2. From Fig. 2 we determine the values of Vfj for the calculated values of k; and §;.

3. From Eqs. (40}-(42) we determine py, Py; Pz.
4

. From Eqs. (12) and (22) we calculate the coordinate functions ¢(X) and ¢(Y); from (35) we calcu-
late @(Z).

5. From Eq. (45) we determine the value of the dimensionless temperature N at the point under con-
sideration.

The results of calculations of the dimensionless temperature N for the center of the source by this
procedure for the case Bi = 0.2 and L,/L, = 1 are shown by the dashed curves in Fig. 3a, b, and c. Also
shown in this figure (solid curves) are the results calculated by the exact method [1].

The quantity plotted along the ordinate is N/Np, where Np is the dimensionless temperature for a
source with dimensions equal to those of the base of the parallelepiped.

Comparison of the calculated results shows that with Ly/L, = 0.1 and ; = 0.1 the discrepancy be-
tween the results does not exceed 10%. At L,/L, > 0.1 and &; < 0.6 the discrepancies are larger, reaching
50% at ; < 0.2. The reason for these large discrepancies is the pronounced nonuniformity of the tem-
perature field for parallelepipeds with sides related in this manner.

NOTATION

1,0 - are the dimensions of the source;
L,, L,, Ly are the dimensions of the parallelepiped;
is the thermal conductivity;
o is the heat-transfer coefficient;
P is the power of energy source;
t, te are the temperatures of the object and the surrounding medium;



¢ =t—1, is the supérheating;
N= $MqgLy, is the dimengionless temperature;
qg = P4, is the heat flux.
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